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ABSTRACT

In this paper, some properties of monotone mappings and quasi-compact
mappings have been studied.

Let (X,.9) and (Y, %) be topological spaces. A mapping f: X — Y is said to
be monotone if f~(y) is connected for every point y € Y. Also, f is said to be
quasicompact [2] if the image under f of every inverse open subset of X is open
(A subset S of X is said to be an inverse set if f~(f(S)) = S). Continuous
quasicompact mappings are often called quotient mappings, factor mappings or
identifications and these have been studied by G. T. Whyburn (6, 7], P. McDougle
[2], A. H. Stone, A. V. Martin and others. Monotone mappings have been
studied by G. T. Whyburn [6,7] and others. In Section 1 of this paper we have
studied some properties of monotone mappings and in Section 2, some properties
of quasicompact mappings. We do not assume mappings (even the quasicompact
ones) to be continuous unless otherwise stated.

1. Monotone mappings

Qur first result is an improvement of the well-known result that the inverse
image of a connected set under an open (or closed) monotone mapping is con-
nected.

DEFINITION. A mapping f: X — Y is said to have property P, if for each
yeY and each open set U such that f~'(y) = U,y belongs to the interior of
FO [21.

P, mappings have been called pseudo-open by Arhangel’skii.
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Every open mapping and every closed mapping is a P; mapping. Also, every P,
mapping is quasi-compact.

THEOREM 1. Inverse images of connected sets under a P, monotone onto
mapping are connected.

Proor. Consider any connected subset K of Y. Let G be a relatively closed as
well as relatively open subset of f ~1(K). Since f is a monotone mapping, therefore
0 must be an inverse set. Also, since f is P,, therefore the restriction of f to any
inverse subset of X has property P; and from [2] we know that the restriction
of f to f ~(K) is quasicompact. Consequently f(G) is closed as well as openin K.
Since K is connected, this is possible only if f(G) = K i.e., only if G = f~(K).
As f~Y(K) has no proper closed and open subset, therefore it is connected.

DerINITION.  Let f: X —2%%5 Y be any mapping. 4 < X is said to be a trace
of B Y if f(4)=B.

THEOREM 2. Let f: X 223 Y be a monotone mapping. A necessary and
sufficient condition for the inverse images under f of connected subsets of Y to
be connected subsets of X is that every connected subset of Y has a connected
trace.

PrOOF. The necessity part is obvious. To prove the sufficiency of the condition,
consider any connected subset K of Y. According to our assumption, thete
exists a connected subset H such that f(H) = K. Consider any point x ef ~(K).
Then, as f is 2 monotone map, f ~!(f(x)) must be a connected subset, which has
nonvoid intersection with the connected set H. Therefore

HUlu{f~'(fe: xef (K} =f"1(K)
is a connected subset of X.
Our next result is a variant of Theorem 3.9 of W. J. Pervin and N. Levine [4]

which. says that a biconnected mapping from a Hausdorff space onto a semi-
locally connected Hausdorff space is continuous.

DEFINITION. A mapping f: X — Y is said to be connected if the image under
f of every connected subset of X is connected in Y.

TueOREM 3. Let (X,7) be a locally connected space and (Y, %) be a locally
connected locally compact Hausdorff space. If f: X <25 Y is a monofone
connected mapping with property Py, then f must be continuous.
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Proor. Consider any point x € X. Let U be any open set containing the point
y =f(x). Since Y is locally compact, there exists an open set ¥ such that
yeV c 7 < U and Vis compact. Then frV(= ¥V NY ~ V) is a compact subset
which does not contain the point y. But Y is a locally connected Hausdorff space.
Therefore for each zefrV we can choose a connected open set U, such that
ze U, and y € U,. This family {U,: z€frV'} is an open cover of the compact set
frV. Consequently, there exists a finite subcover {U;: =1,2,---n} of frV. Also
1) e X ~ 1=/~ (T). Each f ~'(T))is a connected set by virtue of Theorem
1. Let p be an adherent point of f~*(T,) for some i. Then {p} Uf~'(T,) is a
connected subset of X. Therefore its image under the connected mapping f must
be connected in Y i.e., f(p) U U, is connected in Y. But as Y is a Hausdorff
space, f(p) U U, can be connected only if f(p)e U,. So pef~'(T,). Therefore
f-1(0,)is aclosed connected subset of X for alli. Consequently X ~ ( Ji=,f~(U)
is an inverse open set containing f~'(y). Let C be the component of
X ~ | Ji=1f~"(T) which contains the connected set f~'(y). Since X is locally
connected, therefore C is open. Also, since the mapping f is monotone, C must
be an inverse set. Therefore f (C)(\(U;‘=1 U)= & and hence f(C)NfrV
=F or f(C)c VU Y ~ V. Recalling that f(C) is connected, and yef(C)NV
we find that f(C)<s V < U or yef(C)< V < U. Hence f is continuous at the

point x.

CoroLLARY. If (X,7) is a locally connected space and (Y, %) is a locally
connected locally compact Hausdorff space then every (1-1) open connected

mapping of X onto Y is a homeomorphism.
The next theorem is a sharpened form of a theorem of S. Hanai [1].

DEFINITION. A topological space (X,.7) is said to be semi-compact at a point x
if every neighbourhood U of x contains a neighbourhood ¥ of x such that the
frontier of V is compact. (X,7) is said to be semicompact if it has this property
at every point. Semicompact spaces are also often called rim-compact or locally
peripherally compact.

TurorREM 4. Iff: X 22°5Y is an open monotone continuous mapping, where
(X,9) is semicompact and (Y, %) is Hausdorff, then (Y, %) is also a semicompact
space.

Proor. Consider any point y of (Y,%). Let U be any open neighbourhood
of y in Y. Let x be any point belonging to f ~!(y). Then according to the definition
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of a semicompact space, there must be an open set ¥ such that xe V < /= '(U)
frV is compact. Since ¥V is an open mapping, the set W = f(V) is open and it is
easy to see that

(1) fr W flfrf= (W] W.

Again if pe W then either f~*(p) is contained in ¥ or /= (p) N X ~ V3~ .
But as fis a monotone mapping the second possibility can be true only if
Y p) NfrV £ e if £7Y(p) /7S]

Thus in both the cases we have f~'(p)c Vuf-' [f(frV)]. Hence
=YWy PUf-(f(frv)). Now f(frV) is compact and so it is closed in Y.
Therefore /='[f(frV)] is closed in X. So VU f~'[ f(frV)] is a closed subset
of X.

Therefore "
frf=iwy e [Vusf~'(f(frvn]~V
c frVuf i (rY))
= V),
or,

fLfrf=tm] = f(frv).

Hence from (1) we find that frW < f(frV). But frV is compact and so is
(frV). Also, frW being a closed subset of a compact set is compact. We already
know that W is open and y € W < U; consequently the space Y is semi-compact.

Our next result is again a sharpened form of a theorem of Hanai [1] This
result was proved by Morita [3] with the additional assumption that (X,7) is
Hausdorff. Also, this theorem is due to Stone [5] for the case when (X,7) is
metrizable.

THEOREM 5.* If f is a quasicompact, monotone continuous mapping from
a semicompact space (X,9") onto a Hausdorff space (Y, %) such that fr f~'(y)
is compact for each ye€ Y, then [ is a closed mapping.

Proor. Itcan be proved by using an argument similar to the proof of theorem 2
in [5] by replacing the sequence by a net and using a cluster point instead of a
convergent subsequence.

2. Quasicompact mappings

It has beenshown by G. T. Whyburn [6] that the restriction of a quasicompact
continuous mapping f: X —2°s Y to any inverse subset of X is quasicompact

* In the original version, the authors had proved this theorem for P; mappings. It was
pointed out by the referee that the theorem holds for quasi compact mappings.
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provided that Y is a first countable Hausdorff space. Since k-spaces include all
first countable Hausdorff spaces, it is natural to see if the result holds when
we take Y to be a Hausdorff k-space. (A space (X,.7) is said to be a k-space if a
subset F of X is closed in X if and only if F intersects every compact subset of
X in a compact subset).

A space (X,9) is said to be a hereditary k-space if every subspace of X is a
k-space.

THEOREM 6. Iffis a quasicompact and continuous mapping from a space X
onto a Hausdorff hereditary k-space Y, then the restriction of f to any inverse
subset of X is quasicompact.

ProOF. Let f~!(4) be any inverse set in X and f~*(B) be an inverse set which
is relatively closed in f~'(A). The subspace 4 is a k-space. If B is not relatively
closed in A4 then there exists a compact subset C where C = 4 but C N B is not
closed in Y. From the continuity of £, £~ 1(C N B) < f~1(C N B) (closures are
taken in X and Y respectively). But f~4(C N B) < f~1(C) < f~'(4). Therefore
fFIBNO S/ O/ A or f{BNC) = f~1(BNC) NS (4)
< f~1(B)Nf~1(4) =f~1(B), because f~(B) is relatively closed in f~'(4).
Combining these results, f~1(B N C) < /= (B N C). Therefore f~1(B N C) is an
inverse closed subset of X whose image B N C is not closed in Y. Thus we arrive

at a contradiction. Therefore image of every relatively closed inverse subset of
f~(4) is closed in A. Hence the result.

TueOREM 7. Iff:X —22° Yisa quasicompact monotone continuous mapping
and Y is a Hausdorff hereditary k-space, then the inverse of every connected
subset of Y is connected.

Proor. Let K be any connected subset of Y. Suppose f~!(K) is disconnected.
Then f~*(K)=C uUD where C and D are disjoint non-empty sets relatively
open in f~!(K). Since f is a monotone mappng, the sets C and D must be inverse
sets. Also from Theorem 6, the restriction of f to f ~'(K) is quasicompact. There-
fore f(C) and f(D) are disjoint relatively open sets and K = f(C) U f(D). This is
not possible because K is connected. Hence the result.

THEOREM 8. If f:X —22°s Y is a quasicompact continuous mapping where
(X,7) is a locally compact locally connected Hausdorff space and (Y, %) is
any Hausdorff space, then f is a closed mapping provided that f~'(y) is a
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compact connected set for each y € Y. Consequently (Y, %) is a locally connected
locailly compact space.

Proor. Follows easily in view of Theorem 5 of Section 1.

The authors are grateful to the referee for his valuable suggestions which
greatly improved the exposition of the paper.
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