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ABSTRACT 

In this paper, some properties of monotone mappings and quasi-compact 
mappings have been studied. 

Let (X,g-)  and (Y, ql) be topological spaces. A mapping f :  X ~ Y is said to 

be monotone i f f -~ (y )  is connected for every point y ~ Y. Also, f is said to be 

quasicompact [2] if the image under f of every inverse open subset of X is open 

(A subset S of X is said to be an inverse set if f-l(f(S))= S). Continuous 

quasicompact mappings are often called quotient mappings, factor mappings or 

identifications and these have been studied by G. T. Whyburn [6, 7], P. McDougle 

[2], A. H. Stone, A. V. Martin and others. Monotone mappings have been 

studied by G. T. Whyburn [6,7] and others. In Section 1 of this paper we have 

studied some properties of monotone mappings and in Section 2, some properties 

of quasicompact mappings. We do not assume mappings (even the quasicompact 

ones) to be continuous unless otherwise stated. 

1. Monotone mappings 

Our first result is an improvement of the well-known result that the inverse 

image of a connected set under an open (or closed) monotone mapping is con- 

nected. 

D•rlNITION. A mapping f :  X--. Y is said to have property Pt  if for each 

y ~ Y and each open set U such that f -  l(y) _ U, y belongs to the interior of 

f(U) [2]. 
P1 mappings have been called pseudo-open by ArhangeI'skii. 
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Every open mapping and every closed mapping is a P1 mapping. Also, every P1 

mapping is quasi-compact. 

THEOREM 1. Inverse images of connected sets under a P1 monotone onto 

mapping are connected. 

PROOF. Consider any connected subset K of Y. Let G be a relatively closed as 

well as relatively open subset o f f - I (K) .  Sincefis a monotone mapping, therefore 

0 must be an inverse set. Also, since f is P1, therefore the restriction o f f  to any 

inverse subset of X has property P1 and from [-2] we know that the restriction 

o f f  to f -  l(K) is quasicompact. Consequently f(G) is closed as well as open in K. 

Since K is connected, this is possible only i ff(G) = K i.e., only if G = f - l ( K ) .  

As f - I ( K )  has no proper closed and open subset, therefore it is connected. 

DEFINITION. Let f :  X onto+ y be any mapping. A _~ X is said to be a trace 

of B ___ Y if f (A)  = B. 

THEOREM 2. Let f ' .  X onto) y be a monotone mapping. A necessary and 

sufficient condition for the inverse images under f of connected subsets of Y to 

be connected subsets of X is that every connected subset of Y has a connected 

trace. 

PROOF. The necessity part is obvious. To prove the sufficiency of the condition, 

consider any connected subset K of Y. According to our assumption, there 

exists a connected subset H such that f (H) = K. Consider any point x ~ f -  I(K). 

Then, as f is a monotone map, f -  l(f(x)) must be a connected subset, which has 

nonvoid intersection with the connected set H. Therefore 

H U [ U ( f - l ( f ( x ) ) :  x ~f- l (K)}]  = f - l ( K )  

is a connected subset of X. 

Our next result is a variant of Theorem 3.9 of W. J. Pervin and N. Levine [-4] 

which says that a biconnected mapping from a Hausdorff space onto a semi- 

locally connected Hausdorff space is continuous. 

DEFINmON. A mapping f :  X ~ Y is said to be connected if the image under 

f of every connected subset of X is connected in Y. 

TaEOREM 3. Let (X ,J ' )  be a locally connected space and (Y, qQ be a locally 

connected locally compact Hausdorff space. I f  f :  X o,to:~ y is a monotone 

connected mapping with property P1, then f must be continuous. 
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PROOF. Consider any point x ~ X. Let U be any open set containing the point 

y = f (x ) .  Since Y is locally compact, there exists an open set V such that 

y ~ V __c 17 c U and I 7 is compact. ThenfrV(= V c3 Y ,,~ V) is a compact subset 

which does not contain the point y. But Y is a locally connected Hausdorffspace. 

Therefore for each z ~ f rV  we can choose a connected open set Uz such that 

z ~ Uz and y ~ Oz. This family {Uz: z ~frV} is an open cover of the compact set 

frV. Consequently, there exists a finite subcover (Us: = 1,2,... n} of frV.  Also 

f - l ( y )  ~ X ,'- ~.J~= if-1(01). E a c h f - l (  Oi ) is a connected set by virtue of Theorem 

1. Let p be an adherent point o f f - l ( O t )  for some i. Then {p} u f - I ( O , )  is a 

connected subset of X. Therefore its image under the connected mapping f must 

be connected in Y i.e., f(p) u /-71 is connected in Y. But as Y is a Hausdorff 

space, f (p)  u Ci can be connected only if f ( p ) e  0 i. So pEf-l((J~). Therefore 

f -  l(/~) is a closed connected subset of X for all i. Consequently X ,-, U~= 1J- 1(~) 

is an inverse open set containing f - l ( y ) .  Let C be the component of 

X ,~ [,.JT=~f-l(O,) which contains the connected set f - l ( y ) .  Since X is locally 

connected, therefore C is open. Also, since the mapping f is monotone, C must 

be an inverse set. Therefore f ( C ) n ( U ~ = 1 0 , ) = ~  and hence f ( C ) n f r V  

= ~ or f (C)  c V u  Y ,,, F'. Recalling that f (C) is connected, and y ef(C) c3 V 

we find that f (C) c_ V ~ U or y ~f(C) c V c_ U. Hence f is continuous at the 

point x. 

COROLLARY. I f  (X,~'-) is a locally connected space and (Y,#[) is a locally 

connected locally compact Hausdorff space then every (1-1) open connected 

mapping of X onto Y is a homeomorphism. 

The next theorem is a sharpened form of a theorem of S. Hanai [1]. 

DEFINITION. A topological space (X, J-) is said to be semi-compact at a point x 

if every neighbourhood U of x contains a neighbourhood V of x such that the 

frontier of V is compact. (X, ~--) is said to be semicompact if it has this property 

at every point. Semicompact spaces are also often called rim-compact or locally 

peripherally compact. 

THEOREM 4. I f  f :  X o~to ~ Y is an open monotone continuous mapping, where 

(X, J ' )  is semicompact and (Y, q/) is Hausdorff, then (Y, ~)  is also a semicompact 

space. 

PROOF. Consider any point y of (Y,q/). Let U be any open neighbourhood 

of y in Y. Let x be any point belonging to f - l ( y ) .  Then according to the definition 
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of  a semicompact space, there must be an open set V such that  x ~ V ~_f-1(U) 

f rV  is compact. Since V is an open mapping, the set W = f ( V )  is open and it is 

easy to see that 

(1) fr  W ~_f[frf-l(W)] W. 
Again if p e W then either f -  l(p) is contained in 17 or f -  l(p) n X N 17 # ~ .  

But a s f i s  a monotone mapping the second possibility can be true only if 

f - l (p)  n f r Y  ~ i.e. if f - l ( p ) c _ f - l [ f ( f r V ) ] .  

Thus in both the cases we have f - l ( p ) ~  F w f - 1  [f(frV)]. Hence 

f - l ( W )  ~ P w f - l ( f ( f r V ) ) .  Now f ( f rV)  is compact and so it is closed in Y. 

Therefore f - l [ f ( f r Y ) ]  is closed in X. So ~ ' u f - t [ f ( f r V ) ]  is a closed subset 

of X. 

Therefore 
f r f  - i (w)  ~_ [ ~ ' u f - l ( f ( f r V ) ) ]  ,,~ V 

=_ f r V u f - l ( f ( f r V ) )  

= f - l ( f ( f r V ) ) ,  

or, f [ f r f - l (W)]  ~_ f(frV). 

Hence from (1) we find that frW~_f(frV). But frV is compact and so is 

(frV). Also, frW being a closed subset of a compact set is compact. We already 

know that W is open and y 6 W ___ U; consequently the space Y is semi-compact. 

Our next result is again a sharpened form of a theorem of  Hanai [1] This 

result was proved by Morita [3] with the additional assumption that (X, J ' )  is 

Hausdorff. Also, this theorem is due to Stone [5] for the case when (X , J - )  is 

metrizable. 

THEOREM 5.* I f  f is a quasicompact, monotone continuous mapping from 

a semicompact space (X ,Y )  onto a Hausdorff space (Y, #1) such that fr  f - l ( y )  

is compact for each y E Y, then f is a closed mapping. 

PROOF. It can be proved by using an argument similar to the proof  of  theorem 2 

in [5] by replacing the sequence by a net and using a cluster point instead of  a 

convergent subsequence. 

2. Quasieompact mappings 

It has been shown by G. T. Whyburn [6] that the restriction of a quasicompact 

continuous mapping f :  X into ~ y to any inverse subset of X is quasicompact 

* In the original version, the authors had proved this theorem for Pi mappings. It was 
pointed out by the referee that the theorem holds for quasi compact mappings. 
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provided that Y is a first countable Hausdorff space. Since k-spaces include all 

first countable Hausdorff spaces, it is natural to see if the result holds when 

we take Y to be a Hausdorff k-space. (A space (X, ~ is said to be a k-space if a 

subset F of X is closed in X if and only if F intersects every compact subset of 

X in a compact subset). 

A space (X, J-) is said to be a hereditary k-space if every subspace of X is a 

k-space. 

THEOREM 6. I f  f is a quasicompact and continuous mapping from a space X 

onto a Hausdorff hereditary k-space Y, then the restriction o f f  to any inverse 

subset of X is quasicompact. 

PROOF. Let f - I ( A )  be any inverse set in X a n d f - l ( B )  be an inverse set which 

is relatively closed in f - I (A) .  The subspace A is a k-space. If  B is not relatively 

closed in A then there exists a compact subset C where C ~ A but C ~ B is not 

closed in Y. From the continuity o f f ,  f -~(C r iB)c_f - l (C tTB) (closures are 

taken in X and Y respectively). But f - l ( C  OB) ~_f-~(C) ~_f-l(A). Therefore 

f - I ( B ~ C ) ~ f - I ( C ) ~ _ f - ' ( A )  or f - I ( B A C )  = f - ~ ( B  n C) n f - t ( A )  

c _ f - l ( B ) n f - l ( A ) = f - ~ ( B ) ,  because f - l (B )  is relatively closed in f - l (A).  

Combining these results, f - l ( B  n C) ~ f - I ( B  n C). Therefore f - I ( B  N C) is an 

inverse closed subset of X whose image B n C is not closed in Y. Thus we arrive 

at a contradiction. Therefore image of every relatively closed inverse subset of 

f -~(A)  is closed in A. Hence the result. 

THEOREM 7. I f f :X  onto)~ Yisa quasicompact monotonecontinuousmapping 

and Y is a Hausdorff hereditary k-space, then the inverse of every connected 

subset of Y is connected. 

PROOF. Let K be any connected subset of Y. Suppose f - I ( K )  is disconnected. 

Then f - ~ ( K ) =  C u D  where C and D are disjoint non-empty sets relatively 

open in f -~ (K) .  Sincef is  a monotone mappng, the sets C and D must be inverse 

sets. Also from Theorem 6, the restriction o f f  to f - ~ ( K)  is quasicompact. There- 

fore f(C) and f(D) are disjoint relatively open sets and K = f ( C ) u f ( D ) .  This is 

not possible because K is connected. Hence the result. 

THEOREM 8. I f  f :X onto) y is a quasicompact continuous mapping where 

( X , J )  is a locally compact locally connected Hausdorff space and (Y, ql) is 

any Hausdorff space, then f is a closed mapping provided that f - l ( y )  is a 
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compact  connected set f o r  each y ~ Y. Consequently  ( Y, q[) is a locally connected 

locally compact  space. 

PROOF. F o l l o w s  easi ly  in view of  Theo rem 5 o f  Sect ion 1. 

The  au tho r s  a re  gra tefu l  to  the  referee fo r  his va luab le  suggest ions  which 

g rea t ly  improved  the  expos i t ion  o f  the  paper .  
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